Cycloaddition of tetracyanoethene oxide with [60] fullerene

Nadine Jagerovic,^{*,a} José Elguero^a and Jean-Louis Aubagnac^b

^a Instituto de Química Médica, CSIC, Juan de la Cierva 3, E-28006, Madrid, Spain ^b URA 468, Université de Montpellier II (Sciences et Techniques du Languedoc), Place Eugène Bataillon, 34095 Montpellier Cédex 5, France

A monoadduct of [60] fullerene having a tetracyanotetrahydrofuran structure has been isolated and characterized by FAB mass spectrometry and by 13 C NMR spectroscopy.

The reactivity of [60]fullerene towards organic reagents has been largely investigated in recent years. Successful reactions of a variety of nucleophiles, dienes and 1,3-dipoles with [60]fullerene have been reported,^{1,2} leading to well-defined fullerene derivatives (for 1,3-dipolar cycloadditions, see refs. 3– 6). Our interest in the functionalization of [60]fullerene led us to study the reactivity of tetracyanoethene oxide (TCNEO) with [60]fullerene.

A study of the reaction of TCNEO with olefins, acetylenes and aromatic compounds was reported in 1965 by Linn and Benson.⁷ This reaction was extended to naphthalene, anthracene and phenanthrene by Brown and Cookson in 1968.⁸ We have recently described the reactions of monosubstituted benzenes with TCNEO⁹ and we now report our results concerning the cycloaddition of TCNEO with [60]fullerene.

Activated at a temperature above $100 \,^{\circ}$ C, the ring of tetracyanoethene oxide 1 (TCNEO) opens leading to the formation of a carbonyl ylide intermediate 2. The intermediate

2 reacts with [60] fullerene by dipolar cycloaddition to yield the monoadduct 3. The easy ring opening of the tetracyanotetra-hydrofuran with loss of $CO(CN)_2$ observed in aromatic adducts could not occur in the fullerene series due to the absence of any protons.

The tetracyanotetrahydrofuran derivative 3 was characterized by FAB(+) mass spectrometry. Using EI spectrometry the fullerene adducts undergo a retro-cycloaddition and consequently the spectra show a weak abundance for the molecular peak and quite intense peak corresponding to the residue [60]fullerene. By use of FAB ionization, we obtained a FAB mass spectrum (positive ions) in which the abundance of the protonated molecule at m/z 865, (M + H)⁺ is higher than the abundance of the molecular ion M⁺ in the EI mass spectrum.

Diels–Alder, [3 + 2], [2 + 2], [1 + 2] and [1 + 3]cycloadditions always occur across a 6,6-ring fusion.¹⁰ Tetracyanoethene oxide 1 undergoes a [1 + 3] cycloaddition onto a double bond common to two six-membered rings of the [60]fullerene core. Evidence that the isolated cycloadduct was of the type [6 - 6] closed [60]fullerene 3, was obtained by a ¹³C NMR spectrum recorded in CS₂. The presence of 16 carbon resonances in the fullerene region [150-130 ppm] is consistent with a high symmetry (C_{2v}) and the existence of a resonance at $\delta_{\rm C}$ 65.3 attributed to sp³ fullerene carbons agrees with the assigned [6 - 6] isomer 3. The typical cyano carbon signals appear at $\delta_{\rm C}$ 108.9 and the IR spectrum shows an absorption band at $\nu_{\rm max}$ 2240 cm⁻¹ characteristic of the cyano group. In the visible part of the electronic spectrum, recorded in CS₂, the fullerene derivative 3 has main absorption bands between

 λ_{max} 510 and 440 nm (ϵ 1997–1719), while the spectrum of [60]fullerene shows two absorptions at λ_{max} 540 and 600 nm (ϵ 1075 and 950).

Experimental

1,2-(1',1',2',2'-Tetracyanomethanoxymethano)[60]fullerene

To a solution of [60]fullerene (200 mg, 2.78×10^{-4} mol) in toluene (150 cm³), TCNEO (40 mg, 2.78×10^{-4} mol) was added. The reaction mixture was stirred and heated to reflux for 15 h. The reddish solution was then evaporated to give a residue, which was dissolved in chloroform and filtered through Celite. Evaporation of the filtrate yielded the fullerene adduct 3 (54%); *m/z* (FAB) (JEOL SX102 spectrometer; matrix: 3-NOBA) 865 ([M + H]⁺, 15%) and 720 ([M - C₆N₄O], 100); $\delta_{\rm C}(125 \text{ MHz}; \text{ CS}_2)$ 147.16, 146.15, 145.90, 145.77, 144.94, 144.35, 143.63, 143.59, 142.84, 142.44, 142.40, 141.77, 141.62, 140.79, 139.95, 136.70, 108.87 and 65.34; $\lambda_{\rm max}/\text{nm}$ 455 (ε/dm^3 mol⁻¹ 1997), 480 (1719), 540 (1165) and 600 (720); $\nu_{\rm max}(\text{KBr})/\text{cm}^{-1}$ 2240.

Acknowledgements

This work was supported by the Consejo Superior de Investigaciones Científicas (Special Action 'Fullerenes').

References

- 1 A. Hirsch, Angew. Chem., Int. Ed. Engl., 1993, 32, 1138.
- 2 R. Taylor and D. R. M. Walton, Nature, 1993, 363, 685.
- 3 X. Zhang, M. Willems and C. S. Foote, *Tetrahedron Lett.*, 1993, 34, 8187.
- 4 M. S. Meier and M. Poplawska, J. Org. Chem., 1993, 58, 4524.
- 5 S. Muthu, P. Maruthamuthu, R. Ragunathan, P. R. V. Rao and C. K. Mathews, *Tetrahedron Lett.*, 1994, **35**, 1763.
- 6 H. Irngartinger, C.-M. Köhler, U. Huber-Patz and W. Krätschmer, Chem. Ber., 1994, 127, 581.
- 7 W. J. Linn and R. E. Benson, J. Am. Chem. Soc., 1965, 87, 3657.
- 8 P. Brown and R. C. Cookson, Tetrahedron, 1968, 24, 2551.
- 9 A. de la Hoz, C. Pardo, J. Elguero and M. J. Jimeno, *Monatsh. Chem.*, 1992, **123**, 99.
- 10 A. Hirsch, The Chemistry of Fullerenes, Thieme, Stuttgart, 1994;
 W. Duczek and H.-J. Niclas, Tetrahedron Lett., 1995, 36, 2457;
 T. G. Linssen, K. Dürr, M. H. Hanack and A. Hirsch, J. Chem. Soc., Chem. Commun., 1995, 103.

Paper 5/07399E Received 10th November 1995 Accepted 12th January 1996

J. Chem. Soc., Perkin Trans. 1 499